初中高中九科视频课程1200分钟
初一网课强化班辅导课程免费领课 初二网课强化班辅导课程免费领课 初三网课强化班辅导课程免费领课
高一网课强化班辅导课程免费领课 高二网课强化班辅导课程免费领课 高三网课强化班辅导课程免费领课

哈尔滨数学高二补习班

发布于:2022-04-02 14:09:04

哈尔滨数学高二补习班,在简单学习网学习成绩提升不少。

高二数学必修3第三章概率知识点归纳与总结

聪明出于勤奋,天才在于积累。

一.随机事件的概率及概率的意义

1、基本概念:

(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件; (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;

(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;

(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A

出现的频数;称事件A出现的比例fn(A)=nnA为事件A出现的概率:对于给定的随机事件A,如果随着试

验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值nn

A,它具有一定的稳定

性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率

二.概率的基本性质

1、基本概念:

Page 8 of 8

(1)事件的包含、并事件、交事件、相等事件

(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;

(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;

(4)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B为对立事件,则A∪B为必然事件,所以

P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1-P(B) 2、概率的基本性质:

1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);

3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1-P(B);

4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生; (2)事件A不发生且事件B发生;

(3)事件A与事件B同时不发生,而对立事件是指事件A 与事件B有且仅有一个发生,其包括两种情形;

(1)事件A发生B不发生;

(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。

三.古典概型及随机数的产生

(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。 (2)古典概型的解题步骤;①求出总的基本事件数;

②求出事件A所包含的基本事件数,然后利用公式P(A)=

四.几何概型及均匀随机数的产生

基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率

模型为几何概率模型;

(2)几何概型的概率公式:P(A)=;

(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;

2)每个基本事件出现的可能性相等.

以上就是关于哈尔滨数学高二补习班的详细介绍,更多与高二辅导有关的内容,请继续关注数豆子。

简单学习网 简单学习网 - 有影响力的中学互动网校

截至目前,全国各省市的正式注册学员近2300万,从网校走出265位中高考高分学员,万名学员被北大清华、985、211类院校录取,互动网课连续10年学员满意度超过96%。

免费试学

高中网课免费在线试听

他们的成功,你也可以复制

网校学员成绩提升心得

简单学习网初高中辅导五步法

初高中网课辅导老师介绍

相关课程
热门课程