高二文化课培训
发布于:2022-04-07 10:19:45高二文化课培训,简单学习网有免费的试听课程,教学效果很不错。
第一章 随机事件及其概率
第一节 基本概念
随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。
随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。
不可能事件:在试验中不可能出现的事情,记为Ф。
必然事件:在试验中必然出现的事情,记为Ω。
样本点:随机试验的每个基本结果称为样本点,记作ω.
样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示. 一个随机事件就是样本空间的一个子集。基本事件-单点集,复合事件-多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件的关系与运算(就是集合的关系和运算)
包含关系:若事件 A 发生必然导致事件B发生,则称B包含A,记为B?A或A?B。 相等关系:若B?A且A?B,则称事件A与事件B相等,记为A=B。
事件的和:“事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B的和事件。记为 A∪B。
事件的积:称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB。 事件的差:称事件“事件A发生而事件B不发生”为事件A与事件B的差事件,记为 A-B。 用交并补可以表示为A?B?AB。
互斥事件:如果A,B两事件不能同时发生,即AB=φ,则称事件A与事件B是互不相容事件或互斥事件。互斥时A?B可记为A+B。
对立事件:称事件“A不发生”为事件A的对立事件(逆事件),记为A。对立事件的性质:A?B??,A?B??。
事件运算律:设A,B,C为事件,则有
(1)交换律:A∪B=B∪A,AB=BA
(2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC
(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C) A(B∪C)=(A∩B)∪(A∩C)= AB∪AC
(4)对偶律(摩根律):A?B?A?B A?B?A?B
第二节 事件的概率
概率的公理化体系:
(1)非负性:P(A)≥0;
(2)规范性:P(Ω)=1
(3)可数可加性:A1?A2???An??两两不相容时
P(A1?A2???An??)?P(A1)?P(A2)???P(An)??
概率的性质:
(1)P(φ)=0
(2)有限可加性
第三节 古典概率模型
1、设试验E是古典概型, 其样本空间Ω由n个样本点组成,事件A由k个样本点组成.则定义事件A的概率为P(A)?k n
2、几何概率:设事件A是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为P(A)??(A) ?(?)
假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A的概率仍可用上式确定,只不过把μ理解为长度或体积即可.
第四节 条件概率
条件概率:在事件B发生的条件下,事件A发生的概率称为条件概率,记作 P(A|B). P(A|B)?P(AB) P(B)
乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)
全概率公式:设A1,A2,?,An是一个完备事件组,则P(B)=∑P(Ai)P(B|Ai)
贝叶斯公式:设A1,A2,?,An是一个完备事件组,则
P(Ai|B)?P(AiB)?P(B)P(Ai)P(B|Ai) P(A)P(B|A)jj
第五节 事件的独立性
两个事件的相互独立:若两事件A、B满足P(AB)= P(A) P(B),则称A、B独立,或称A、B相互独立.
三个事件的相互独立:对于三个事件A、B、C,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),P(ABC)= P(A) P(B)P(C),则称A、B、C相互独立
三个事件的两两独立:对于三个事件A、B、C,若P(AB)= P(A) P(B),P(AC)= P(A)P(C),P(BC)= P(B) P(C),则称A、B、C两两独立
独立的性质:若A与B相互独立,则A与B,A与B,A与B均相互独立
总结:1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。2.乘法公式、全概公式、贝叶斯公式在概率论的计算中经常使用, 应牢固掌握。3.独立性是概率论中的最重要概念之一,应正确理解并应用于概率的计算。
以上就是关于高二文化课培训的详细介绍,更多与高二辅导有关的内容,请继续关注数豆子。